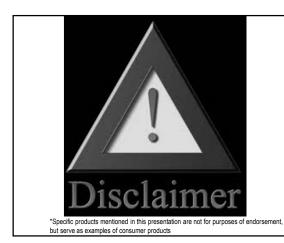
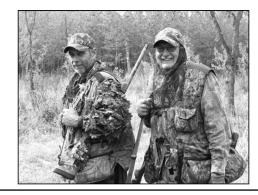
A Shot of Prevention: Firearms and Hearing Protection

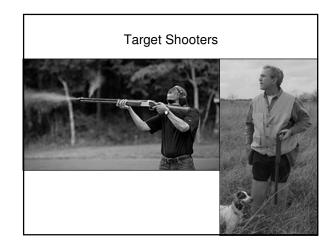

Deanna K. Meinke, Ph.D.

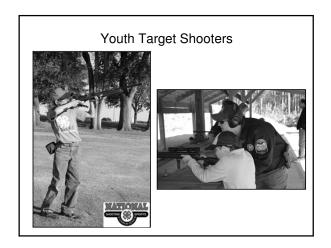
Rudyard Research Team

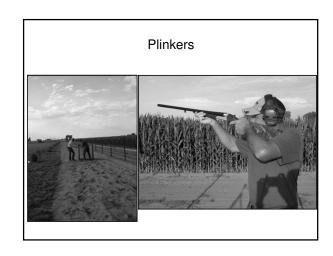
LEFT TO RIGHT:
Amir Khan, Ph.D.
Jacob Soendergaard, B.Eng., M.Sc.
Deanna Meinke, Ph.D.
Greg Flamme, Ph.D.
James Lankford, Ph.D.
Michael Stewart, Ph.D.
Donald Finan, Ph.D.
William Murphy, Ph.D.

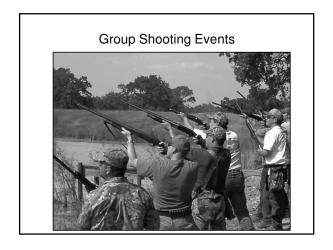

Learning Objectives

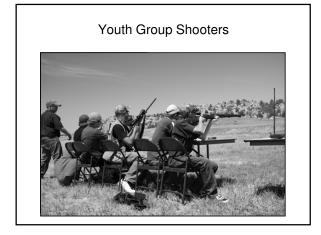
- Understand the unique signal characteristics of impulse/impact noise source and the hazard to hearing
- Identify factors that influence the auditory damage risk from recreational firearm impulse noise exposures
- Select the appropriate type of hearing protector for individuals exposed to recreational firearm impulse noise (hunters and target shooters).
- Understand the active and passive performance of electronic hearing protectors worn for impulse noise.

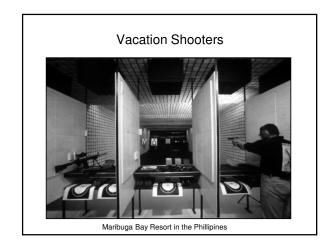

Overview

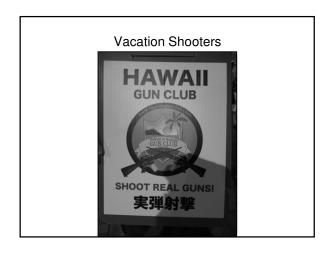

- Who is exposed to firearm noise?
- Firearms: The sound source
- Auditory Risk from Firearms
- Sound Exposure Variables
- Hearing Protection

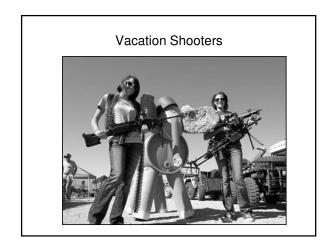

Hunters

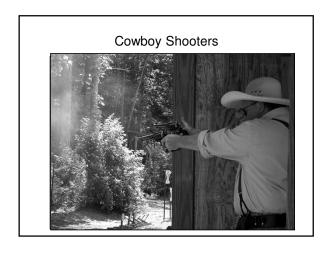


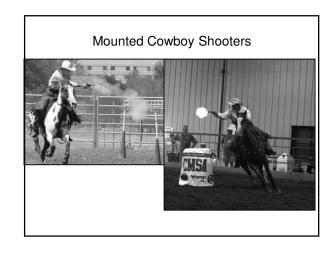


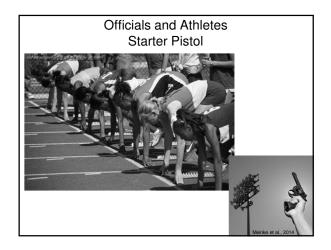


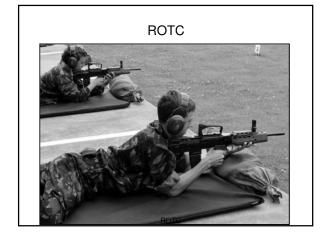


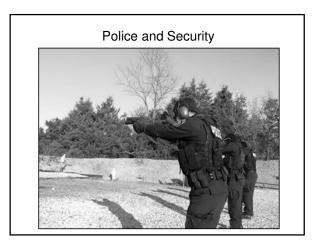


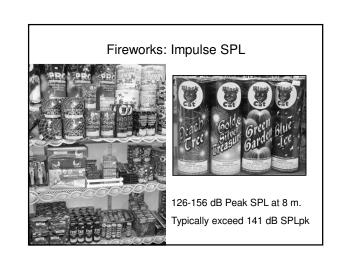


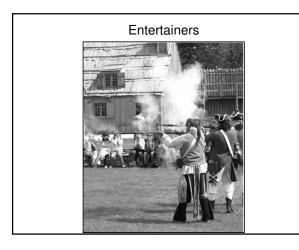


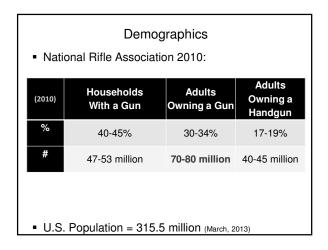






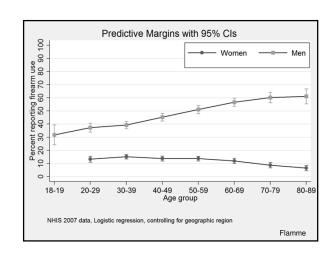





Demographics: Occupational

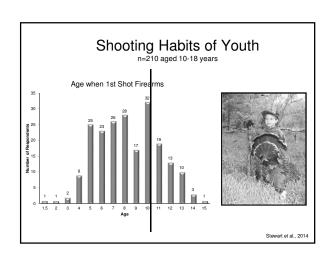
- ~ 4.5 million work/train with firearms not counting self-employed (DOL: Bureau of Labor Statistics: 2010, 2011)
 - Police: 794,300 (1 million projected by 2018)
 - Military: ~Active & Reserve 1,211,575 (fluctuates)
 - Security & Gaming Surveillance Officers: 1,090,600
 - Game & Fish Wardens: 7,240

Deanna.Meinke@unco.edu



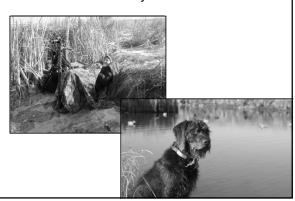
Demographics

- NRA: 70 million own guns
 - NRA (2005): 45% of men & 13% of women own a gun
 - NHIS (2007): 46% of men & 13% of women have fired a gun, most of these shooting over 100 rounds.



Demographics

- Hunters: (U.S. FWS, 2001 & 2006; Southwick & Associates, 2010)
 - 28 million Americans consider themselves hunters
 - 18 million over the age of 16 hunted an average of 18 days a year during a five-year period 2002-2006.
 - 1.74 million were youth aged 6-15 years

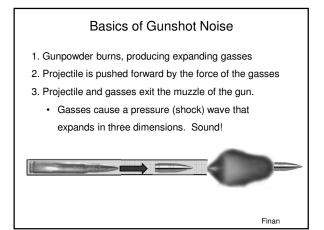

Demographics

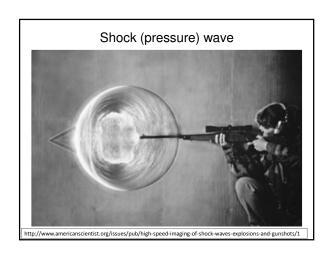
- Sports Shooters (hunters, cowboy shooters etc.)
 - 20.6 million Americans (NSSF, 2009)
 - 19 million active target shooters (skeet, trap and sporting clays)

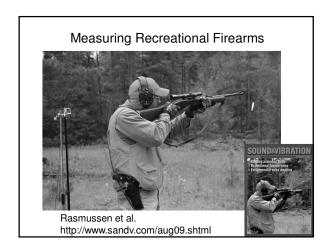
Target Shooter and Bystander

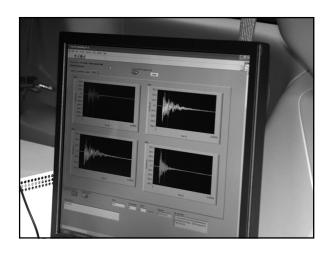
Other Bystanders

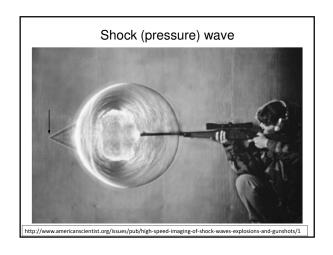
Overview

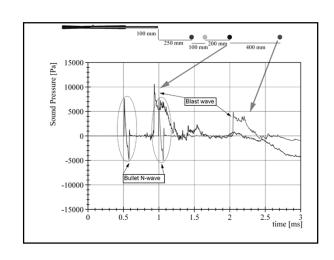

- Who is exposed to firearm noise?
- Firearms: The sound source
- Auditory Risk from Firearms
- Sound Exposure Variables
- Hearing Protection


Firearm Sound


■ The sound created by recreational firearms used in hunting or target practice is characterized by a high-frequency, short-duration impulsive noise. This signal is perceived by the human ear as one single, loud impulse or "shot."


Impulse noise


- Impulse Noise: usually considered to be singular noise pulses, each less than 1 second in duration, or repetitive noise pulses occurring at greater then 1 second intervals.
- Also defined as a change of sound pressure of 40 dB or more within 0.5 sec.

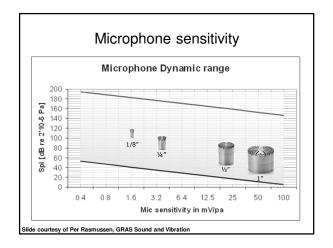


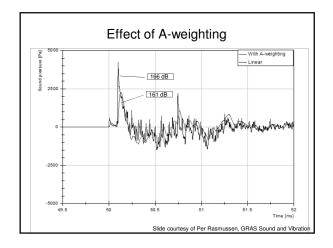
Impulse (and impact) Hazard

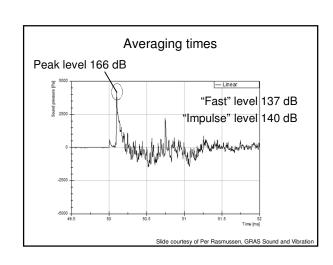
- 140 dB peak sound pressure level limit
 - OSHA 29 CFR 1910.95 (1983)
 - MSHA 30 CFR, Part 62 (1999)
 - FRA 49 CFR 227 and 229 (2007)
 - NIOSH Pub. No. 98-126 Criteria Document (1998)
 - U.S. MIL-STD-1474D (U.S. DoD, 1997)
 - EPA (1974)
 - WHO (1999)
 - *120 dB peak SPL for children

Impulse Hazard

- Damage Risk Criteria (DRC)
 - Total energy contained in the impulse (L_{Aeg8})
 - Frequency spectrum
 - Pressure wave (A duration)
 - Pressure envelope (B duration)
 - Briefly, the A-duration is the time interval between the initial pressure rise of the impulse and the moment the pressure passes through ambient.
 - The B-duration is the time interval during which the envelope of the signal resides within 20 dB of the peak pressure.


Measuring with a Sound Level Meter

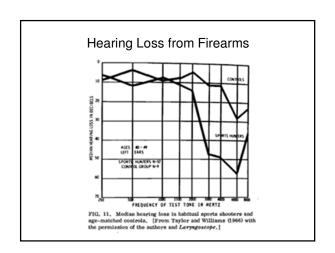

- Microphone limitations
- Inadequate power supply
- Frequency weighting (response)
 - A-weighting
 - C-weighting



- Averaging
 - "Fast" (125 ms)
 - "Impulse" (5ms rise, 1.5 s falling)

Slide courtesy of Per Rasmussen, GRAS Sound and Vibration

Overview

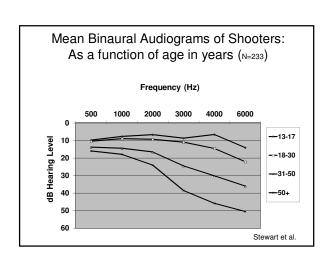

- Who is exposed to firearm noise?
- Firearms: The sound source
- Auditory Risk from Firearms
- Sound Exposure Variables
- Hearing Protection

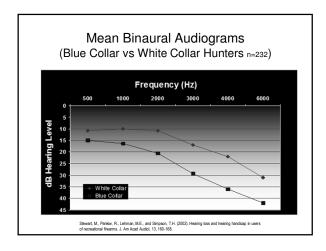
Acoustic Trauma

- Single exposure to intense sound leading to permanent hearing loss
 - At or above ~125-130 dB peak SPL

Acoustic Trauma

- "At high levels of acoustic energy, delicate structures are ripped apart." (Hamernik & Henderson, 1974)
 - Organ of Corti ripped from basilar membrane
 - Pillar & Hensen's cells destroyed
 - Cell junctions between HCs and Deiter's cells & Hensen's cells broken. (Hamernik, Turrentine, & Roberto, 1986)
 - Small lesion initially but grows over 2-30 days after exposure (Hamernik et al., 1986)


Research in Recreational Firearm Noise Exposure at CMU (1997-2012)


- Shooting Habits
 - Adults (2)
 - Youth
 - Deer hunters
 - Waterfowl hunters
 - Females

- Hearing loss & hearing handicap in shooters
- Tinnitus in shooters
- Shooters knowledge of hearing conservation

Stewart et al.

Study	YES RESPONSES	Mildly Annoying	Moderately Annoying	Severely Annoying
ННІ	NA			
Risk Patterns & Shooting Habits*	19%	70%	23%	7%
Shooting Habits of Waterfowl Hunters	21%	75%	21%	4%
Knowledge of Recreational Shooters	22%	67%	22%	9% (2% no response)

Self-Reported Tinnitus

- WATERFOWL HUNTERS:
 - 51% of respondents reported experiencing tinnitus after hunting
 - Several hunters reported that it occurred every time after hunting.
 - On average, 25% of respondents reported it occurred 5-10 times throughout the season.
- WILDLIFE CONSERVATION MEMBERS
 - 65% note tinnitus or increase in tinnitus after shooting.

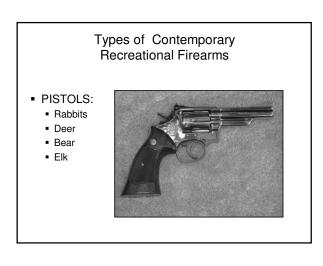
Stewart et al.

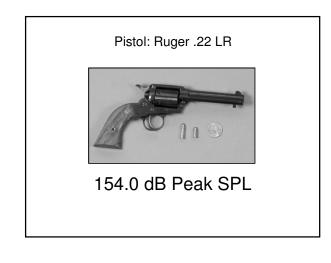
Current Use of Amplification

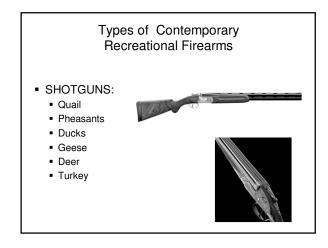
- Currently utilize amplification:
 - $ext{ Yes} = 3.7\% (n = 11)$
 - Bilateral users = 7
 - Unilateral users = 4
 - No = 96.3% (n = 286)

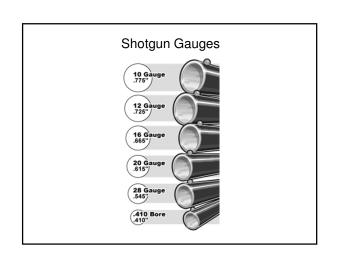
Stewart et al.

Overview


- Who is exposed to firearm noise?
- Firearms: The sound source
- Auditory Risk from Firearms
- Sound Exposure Variables
- Hearing Protection


Sound Exposure Variables

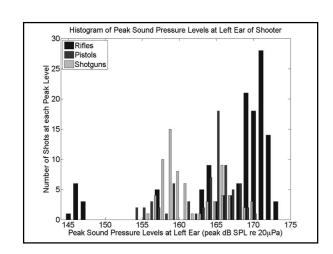

- Type of Firearm / Amount of powder
- Distance to the ear
- Firearm modifications
- Number of shots
- Shooting environment
- Hearing protection



Shotguns: Remington 12 gauge

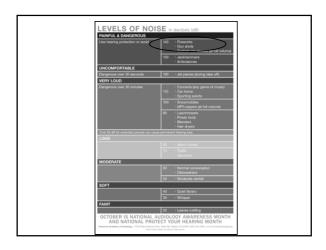
160.1 dB Peak SPL

Modern Cartridges / Shells

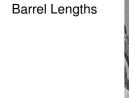

- Pistol
- Rifle
- Shotgun

Modern Cartridges

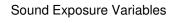
- .50 BMG
- .300 Win Mag
- .308 Win
- 7.62 x 39mm
- 5.56mm NATO
- **.**22



Firearm peak levels


- Rifles
 - ~163 to 174 dB SPL_{pk}
 - Smaller .22's ~144 dB SPL_{pk}
- Pistols
 - ~ 148 to 171 dB SPL_{pk}
- Shotguns
 - ~156 to 170 dB SPL_{pk}

See handout for Peak dB SPLs for specific firearms (5 published studies)

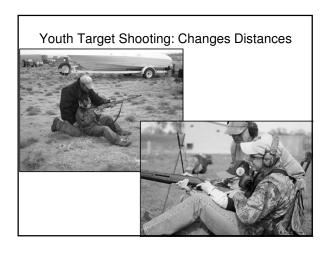


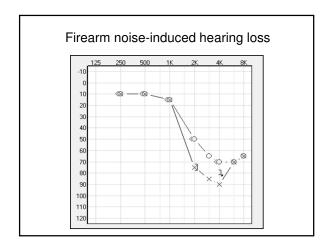
Sound Exposure Variables

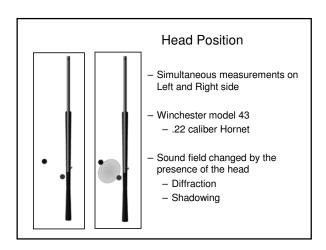
- Type of Firearm / Amount of powder
- Distance to the ear
- Firearm modifications
- Number of shots
- Shooting environment
- Hearing protection

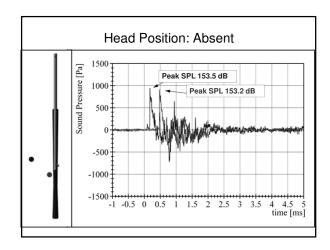
Distance to ear

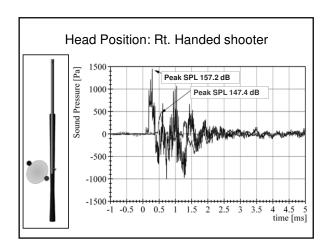
Sound Exposure Variables

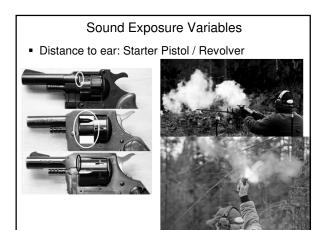

Distance to ear

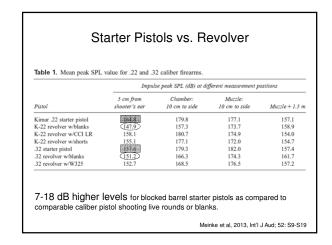


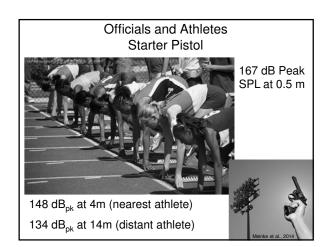

Sound Exposure Variables

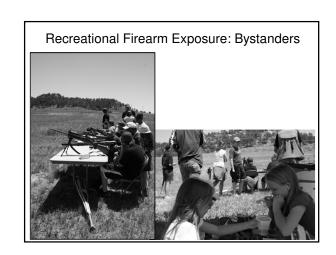

■ Distance to ear

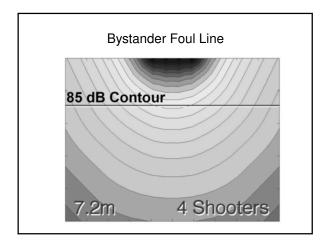


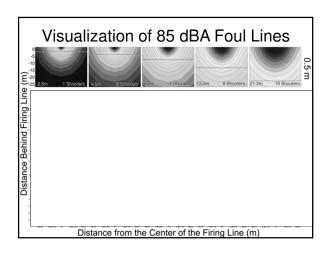


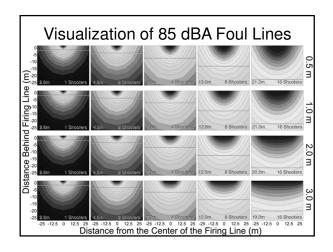


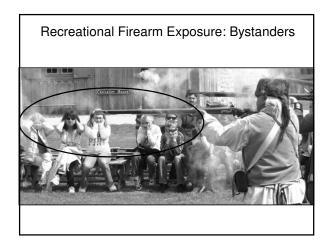









Auditory Risk to Unprotected Bystanders Exposed to Firearm Noise DOI: 10.3766/jana.22.24 Gregory A. Flamme* Michael Skewut† Deana Meinkel James Lankfords Per Ramussen** Impulses from 15 recreational firearms were obtained 1m to the left of the shooter Instantaneous peak levels at the bystander location ranged between 149 and 167 dB SPL


Bystander Exposure

Sound Exposure Variables

- Type of Firearm / Amount of powder
- Distance to the ear
- Firearm modifications
- Number of shots
- Shooting environment
- Hearing protection

Sound Exposure Variables Muzzle brakes / ports Suppressor (silencer)

Sound Exposure Variables

- Type of Firearm / Amount of powder
- Distance to the ear
- Firearm modifications
- Number of shots
- Shooting environment
- Hearing protection

Variables & Ballistics

Number of shots

Reported Number of Shots Fired (for current year hunting season) ☐ Target Practice ■ Large Game ■ Small Game 70 60 % 50 40 30 20 10 1 to 10 11 to 50 51 to 100 101 to 150 151 to 200 SHOTS FIRED Stewart et al.

Sound Exposure Variables

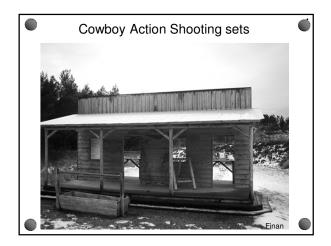
- Type of Firearm / Amount of powder
- Distance to the ear
- Firearm modifications
- Number of shots
- Shooting environment
- Hearing protection

Shooting Environment

There are many instances in which impulse noise may be produced near surfaces that may reflect the acoustic energy, or within enclosed chambers, where reverberation is likely to occur...

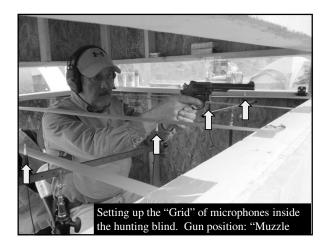
Finan

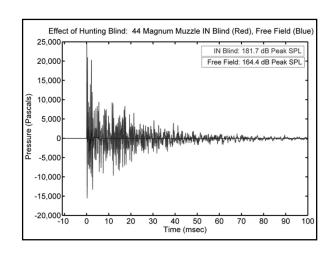
Sound Reflection & Reverberation

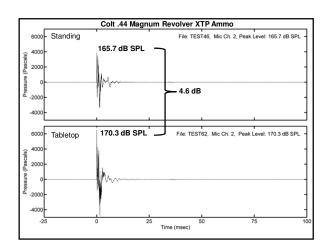

 Reflection: sound waves that encounter a flat surface will reflect coherently. Hard, nonporous surfaces produce the greatest, most coherent reflection.

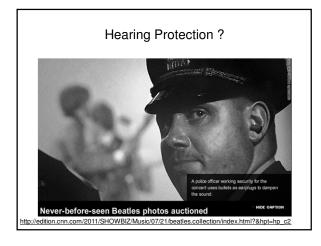
 Reverberation: prolonged acoustic energy in an enclosed space due to reflection.

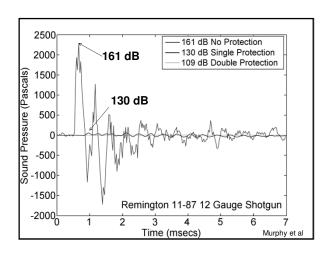
inan









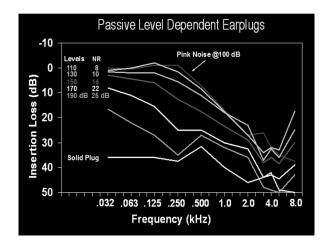

Sound Exposure Variables Type of Firearm / Amount of powder Distance to the ear Firearm modifications Number of shots Shooting environment Hearing protection

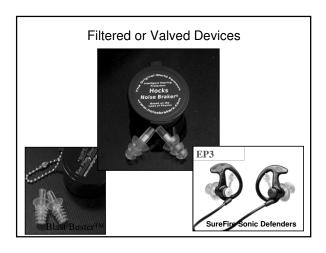
HPD Use: Target Shooting vs. Hunting

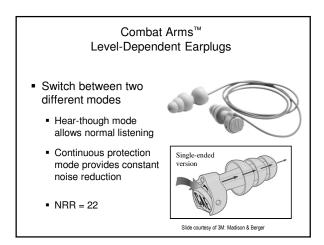
- 16 to 30% NEVER wear HPD while target shooting
- 39 to 52% ALWAYS wear HPD while target shooting
- 76 to 83% NEVER wear HPD while hunting
- 6 to 8% ALWAYS wear HPD while hunting

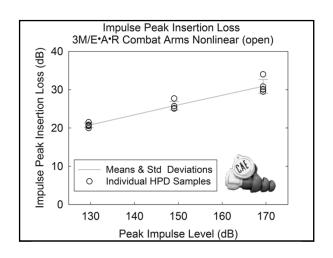
Stewart et al

Device Terminology


- Conventional passive
- Linear or Non-linear (amplitude-sensitive)
- Active, Level Limiting or Sound Restoration
 - Designed for impulse noise vs.
 - Active Noise Reduction (ANR)


Specialty Devices

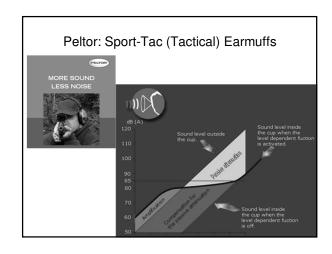

- Special devices have been developed to afford adequate attenuation AND preserve or augment auditory perception.
- Safety Considerations: If you really think about it; anyone with a firearm in their hands or near a firearm user, should be able to communicate effectively.
- Especially when learning to shoot


Passive: Filtered or Valved Devices

- Structural elements and mechanical devices such as small apertures, ducts, diaphragms, dampers, valves, and springs.
- Nonlinear acoustical behavior develops when highlevel sound (above 120 dB) impinges on the small opening.
 - Laminar airflow for lower intensity sounds pass through
 - <u>Turbulent airflow</u> for higher intensity sounds increase acoustic resistance within the aperture.

Uniform "Flat" Attenuation ■ Attempts to restore the natural sound spectrum for the listener with linear attenuation from ~100-8000 Hz. ■ Marketed as "Musicians Earplug" Ety-Plug by Etymotic Research or 3M Hi-Fi™ ■ Also available in custom products

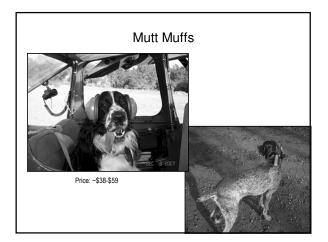
Electronic Hearing Protectors

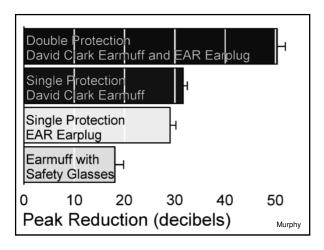

- Amplitude sensitive = Level dependent function
- Modified conventional earmuff or earplugs with external microphone
- Output limited amplifier
 - Usually maintains output at 82-85 dBA earphone level
 - Cutoff level of 115-120 dBA, electronics cease function.
- Specific band-pass frequency characteristics possible (e.g. speech Hz).
- Specific amplification paradigm possible

Electronic protectors

- Impulse durations too brief for compression
- Hearing aids and electronic circuits have about 5 ms attack times
- Impulse durations are less than 5 ms
- IT IS THE PASSIVE FIT OF THE DEVICE THAT PROVIDES THE ATTENUATION

Creative Approach?


Howard Leight by Honeywell: Impact® Pro Electronic Earmuffs



NRR = 30

- "Extreme hearing protection" for handgun shooters, especially at indoor ranges.
- •"voice amplification for communication on the range"
- •Audio jack for connection to music, radios, scanner, phones
- •Single ON/OFF and VC knob

Price:\$78.99

Marketing Ploys: Beware

- Valved earplug retail site: "....only type of hearing protector that attenuate high-level noises while allowing low-level environmental sound to pass through".
- Filtered earplug manufacturer site: "As a result, no sound over approximately 85 decibels is allowed to pass through the filter into your ear!"
- Common: "can hear distant whispers"
- Common: "... potentially harmful sound levels above 85dB are reduced to safe levels."

How high above?

Passive: Filtered or Valved Devices

- Advantages:
 - Less expensive
 - Durable
 - Low maintenance
 - Does not rely on power source (no batteries)
 - Small and easily carried and stored
- Disadvantages
 - Limited in acoustic and communication features
 - Filtered components may become damaged or blocked
 - Valved components may unknowingly fail
 - Small may be easily displaced or lost

Electronic: Ear Muffs

- Advantages:
 - Advanced acoustic and communication features
 - Provides amplification if needed for hearing-impaired or to augment natural hearing
 - Provides insulation from the cold
 - Passive attenuation possibly more consistent

Expense?

- Disadvantages
 - Batteries may go bad (depleted or temperatures)
 - Wind noise across microphones
 - Durability in field/weather conditions ?
 - Interferes with shouldering a weapon
 - More susceptible to slit leaks from glasses / hats

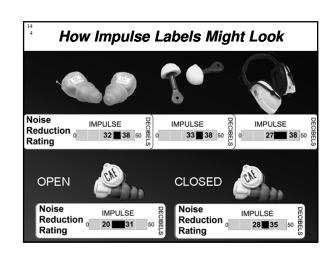
Electronic: Ear Plugs

- Advantages:
 - Advanced acoustic and communication features
 - Provides amplification if needed for hearing-impaired or to augment natural hearing
 - Custom-shaped to ear, possible comfort advantage?
 - Small and easily carried and stored
 - Less susceptible to slit leaks from glasses / hats
 - Does not interfere with shouldering a weapon
- Disadvantages
 - More expensive
 - · More easily displaced or lost
 - Power source (batteries) may be depleted or limited by temperatures)
 - Wind noise across microphones
 - Durability in field/weather conditions ?
 - · Passive attenuation dependent upon shell fit

The Problems with the NRR...

- Designed for Continuous Noise
- Typical protectors exhibit nonlinear response at high levels >140 dB SPL
- Nonlinear orifice protectors provide increased attenuation with increasing peak Sound Pressure Level (peak SPL).
- Electronic Protectors are designed to limit output to levels below about 82 dB peak SPL.

Murphy. W

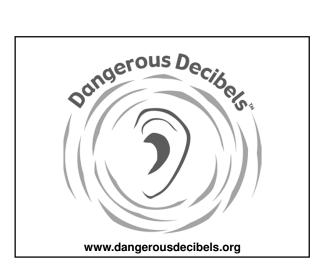

Proposal: Impulse Noise Reduction

- Measure the Performance for protectors for levels from 130 to 170 peak SPL.
- Measure performance over a range of levels (130-134), (148-152) and (166-170) dB.
- Measure the device on an Acoustic Test Fixture (ATF) to limit human subject exposure.
- Measure both Free-field and ATF waveforms and apply signal processing to the determine the impulse noise reduction rating.

Murphy, W

Terminology

- Impulse Peak Insertion Loss (IPIL)
 Eardrum_{protected} Eardrum_{unprotected}
- Peak reductionEardrum_{protected} Field


Audibility / Intelligibility **Demands of Hunters**

- Interpersonal communication for safety & logistics
- Audibility of animal sounds
- Audibility of firearm function
- Audibility of dog beeper collars, GPS
- Monitoring of their calling sounds
- Localization is critical

Summary Advice for Shooters

- Always wear HPDs when shooting
 - Keep earplugs handy, put in all ammo boxes, gun cases
- Double protect with high power firearms & if wearing glasses
- Use non-linear or appropriate electronic ear protection for hunting or when audibility is critical
- Recognize that temporary hearing loss and/or tinnitus after shooting is a warning sign of ineffective protection

Summary Advice for Shooters

- Consider shooting smaller calibers when possible
- Choose a single shot or bolt over a semiauto
- Avoid high risk situations (e.g. shooting inside reverberant areas, over hard surfaces)
- Annual hearing tests to confirm protector effectiveness
- Use hearing protection for other hazardous sound exposures

Individual Exposure Considerations

- How often firearms used
- Number of shots fired
- Type of firearm
- Size of the gun
- Size of the caliber or gauge
- Firearm modifications
- Type of ammunition
- Hunter vs. Target/Skeet Shooting
- Indoor vs. Outdoor
- Acoustic characteristics of the impulse
- Protected vs. Unprotected
- Hearing protector fit and effectiveness

